Search results for " generalized linear models"

showing 6 items of 6 documents

Modeling Posidonia oceanica growth data: from linear to generalized linear mixed models

2010

The statistical analysis of annual growth of Posidonia oceanica is traditionally carried out through Gaussian linear models applied to untransformed, or log-transformed, data. In this paper, we claim that there are good reasons for re-considering this established practice, since real data on annual growth often violate the assumptions of Gaussian linear models, and show that the class of Generalized Linear Models (GLMs) represents a useful alternative for handling such violations. By analyzing Sicily PosiData-1, a real dataset on P. oceanica growth data gathered in the period 2000–2002 along the coasts of Sicily, we find that in the majority of cases Normality is rejected and the effect of …

Statistics and ProbabilityGeneralized linear modelSettore BIO/07 - EcologiabiologyEcological Modelingmedia_common.quotation_subjectGaussianLinear modelPosidonia oceanica annual growth Generalized Linear Models Generalized Linear Mixed Models lepidochronological data.biology.organism_classificationGeneralized linear mixed modelHierarchical generalized linear modelsymbols.namesakePosidonia oceanicaStatisticsEconometricsGamma distributionsymbolsSettore SECS-S/01 - StatisticaNormalityMathematicsmedia_common
researchProduct

Model averaging estimation of generalized linear models with imputed covariates

2015

a b s t r a c t We address the problem of estimating generalized linear models when some covariate values are missing but imputations are available to fill-in the missing values. This situation generates a bias-precision trade- off in the estimation of the model parameters. Extending the generalized missing-indicator method proposed by Dardanoni et al. (2011) for linear regression, we handle this trade-off as a problem of model uncertainty using Bayesian averaging of classical maximum likelihood estimators (BAML). We also propose a block model averaging strategy that incorporates information on the missing-data patterns and is computationally simple. An empirical application illustrates our…

Generalized linear modelEconomics and EconometricsApplied MathematicsSettore SECS-P/05 - EconometriaEstimatorMissing dataGeneralized linear mixed modelModel averaging Bayesian averaging of maximum likelihood destimators Generalized linear models Missing covariates Generalized missing-indicator method shareHierarchical generalized linear modelStatisticsLinear regressionCovariateApplied mathematicsGeneralized estimating equationMathematics
researchProduct

dglars: An R Package to Estimate Sparse Generalized Linear Models

2014

dglars is a publicly available R package that implements the method proposed in Augugliaro, Mineo, and Wit (2013), developed to study the sparse structure of a generalized linear model. This method, called dgLARS, is based on a differential geometrical extension of the least angle regression method proposed in Efron, Hastie, Johnstone, and Tibshirani (2004). The core of the dglars package consists of two algorithms implemented in Fortran 90 to efficiently compute the solution curve: a predictor-corrector algorithm, proposed in Augugliaro et al. (2013), and a cyclic coordinate descent algorithm, proposed in Augugliaro, Mineo, and Wit (2012). The latter algorithm, as shown here, is significan…

Statistics and ProbabilityGeneralized linear modelEXPRESSIONMathematical optimizationTISSUESFortrancyclic coordinate descent algorithmdgLARSFeature selectionDANTZIG SELECTORpredictor-corrector algorithmLIKELIHOODLEAST ANGLE REGRESSIONsparse modelsDifferential (infinitesimal)differential geometrylcsh:Statisticslcsh:HA1-4737computer.programming_languageMathematicsLeast-angle regressionExtension (predicate logic)Expression (computer science)generalized linear modelsBREAST-CANCER RISKVARIABLE SELECTIONDifferential geometrydifferential geometry generalized linear models dgLARS predictor-corrector algorithm cyclic coordinate descent algorithm sparse models variable selection.MARKERSHRINKAGEStatistics Probability and UncertaintyHAPLOTYPESSettore SECS-S/01 - StatisticacomputerAlgorithmSoftware
researchProduct

Using the dglars Package to Estimate a Sparse Generalized Linear Model

2015

dglars is a publicly available R package that implements the method proposed in Augugliaro et al. (J. R. Statist. Soc. B 75(3), 471-498, 2013) developed to study the sparse structure of a generalized linear model (GLM). This method, called dgLARS, is based on a differential geometrical extension of the least angle regression method. The core of the dglars package consists of two algorithms implemented in Fortran 90 to efficiently compute the solution curve. dglars is a publicly available R package that implements the method proposed in Augugliaro et al. (J. R. Statist. Soc. B 75(3), 471-498, 2013) developed to study the sparse structure of a generalized linear model (GLM). This method, call…

Generalized linear modelFortranLeast-angle regressionGeneralized linear array modelFeature selectionSparse approximationdgLARS generalized linear models sparse models variable selectionGeneralized linear mixed modelSettore SECS-S/01 - StatisticacomputerGeneralized estimating equationAlgorithmMathematicscomputer.programming_language
researchProduct

Differential geometric LARS via cyclic coordinate descent method

2012

We address the problem of how to compute the coefficient path implicitly defined by the differential geometric LARS (dgLARS) method in a high-dimensional setting. Although the geometrical theory developed to define the dgLARS method does not need of the definition of a penalty function, we show that it is possible to develop a cyclic coordinate descent algorithm to compute the solution curve in a high-dimensional setting. Simulation studies show that the proposed algorithm is significantly faster than the prediction-corrector algorithm originally developed to compute the dgLARS solution curve.

Cyclic coordinate descent method Differential geometry dgLARS Generalized linear models LARS Sparse models Variable selectionSettore SECS-S/01 - Statistica
researchProduct

Weighted-average least squares estimation of generalized linear models

2018

The weighted-average least squares (WALS) approach, introduced by Magnus et al. (2010) in the context of Gaussian linear models, has been shown to enjoy important advantages over other strictly Bayesian and strictly frequentist model averaging estimators when accounting for problems of uncertainty in the choice of the regressors. In this paper we extend the WALS approach to deal with uncertainty about the specification of the linear predictor in the wider class of generalized linear models (GLMs). We study the large-sample properties of the WALS estimator for GLMs under a local misspecification framework that allows the development of asymptotic model averaging theory. We also investigate t…

Generalized linear modelEconomics and EconometricsGeneralized linear modelsBayesian probabilityGeneralized linear modelSettore SECS-P/05 - EconometriaLinear predictionContext (language use)01 natural sciencesLeast squares010104 statistics & probabilityWALS; Model averaging; Generalized linear models; Monte Carlo; AttritionFrequentist inference0502 economics and businessAttritionEconometricsApplied mathematicsStatistics::Methodology0101 mathematicsMonte Carlo050205 econometrics MathematicsWALSApplied Mathematics05 social sciencesLinear modelEstimatorModel averaging
researchProduct